Базофильное ядро

Базофильное ядро

Функции

Эритроциты — высокоспециализированные клетки, функцией которых является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO2) в обратном направлении. У позвоночных, кроме млекопитающих, эритроциты имеют ядро, у эритроцитов млекопитающих ядро отсутствует.

Наиболее специализированы эритроциты млекопитающих, лишённые в зрелом состоянии ядра и органелл и имеющие форму двояковогнутого диска, обусловливающую высокое отношение площади к объёму, что облегчает газообмен. Особенности цитоскелета и клеточной мембраны позволяют эритроцитам претерпевать значительные деформации и восстанавливать форму (эритроциты человека диаметром 8 мкм проходят через капилляры диаметром 2—3 мкм).

Транспорт кислорода обеспечивается гемоглобином (Hb), на долю которого приходится ≈98 % массы белков цитоплазмы эритроцитов (в отсутствии других структурных компонентов). Гемоглобин является тетрамером, в котором каждая белковая цепь несёт гем — комплекс протопорфирина IX с ионом двухвалентного железа, кислород обратимо кординируется с ионом Fe2+ гемоглобина, образуя оксигемоглобин HbO2:

Hb + O2 HbO2

Особенностью связывания кислорода гемоглобином является его аллостерическое регулирование — стабильность оксигемоглобина падает в присутствии 2,3-дифосфоглицериновой кислоты — промежуточного продукта гликолиза и, в меньшей степени, углекислого газа, что способствует высвобождению кислорода в тканях, в нём нуждающихся.

Транспорт углекислого газа эритроцитами происходит с участием карбоангидразы, содержащейся в их цитоплазме. Этот фермент катализирует обратимое образование бикарбоната из воды и углекислого газа, диффундирующего в эритроциты:

H2O + CO2 H+ + HCO3-

В результате в цитоплазме накапливаются ионы водорода, однако снижение pH при этом незначительно из-за высокой буферной ёмкости гемоглобина. Вследствие накопления в цитоплазме ионов бикарбоната возникает градиент концентрации, однако ионы бикарбоната могут покидать клетку только при условии сохранения равновесного распределения зарядов между внутренней и внешней средой, разделённых цитоплазматической мембраной, то есть выход из эритроцита иона бикарбоната должен сопровождаться либо выходом катиона, либо входом аниона. Мембрана эритроцита практически непроницаема для катионов, но содержит хлоридные ионные каналы, в результате выход бикарбоната из эритроцита сопровождается входом в него хлорида (хлоридный сдвиг).

8.гемоглобин и его функции. Гемоглобин— сложный железосодержащий белок животных, обладающих кровообращением, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных животных содержится в эритроцитах, у большинства беспозвоночных растворён в плазме крови (эритрокруорин) и может присутствовать в других тканях[1]. Молекулярная масса гемоглобина человека — около 66,8 кДа.

Нормальным содержанием гемоглобина в крови человека считается: у мужчин 130—160 г/л (нижний предел — 120, верхний предел — 180 г/л), у женщин 120—150 г/л; у детей нормальный уровень гемоглобина зависит от возраста и подвержен значительным колебаниям. Так, у детей через 1—3 дня после рождения нормальный уровень гемоглобина максимальный и составляет 145—225 г/л, а к 3—6 месяцам снижается до минимального уровня 95—135 г/л, затем с 1 года до 18 лет отмечается постепенное увеличение нормального уровня гемоглобина в крови.

Главная функция гемоглобина состоит в переносе кислорода. У человека в капиллярах лёгких в условиях избытка кислорода последний соединяется с гемоглобином. Током крови эритроциты, содержащие молекулы гемоглобина со связанным кислородом, доставляются к органам и тканям, где кислорода мало; здесь необходимый для протекания окислительных процессов кислород освобождается от связи с гемоглобином. Кроме того, гемоглобин способен связывать в тканях небольшое количество диоксида углерода (CO2) и освобождать его в лёгких.

Монооксид углерода (CO) связывается с гемоглобином крови намного сильнее (в 250 раз[3]), чем кислород, образуя карбоксигемоглобин (HbCO). Некоторые процессы приводят к окислению иона железа в гемоглобине до степени окисления +3. В результате образуется форма гемоглобина, известная как метгемоглобин (HbOH) (metHb, от «мета-» и «гемоглобин», иначе гемиглобин или ферригемоглобин, см. Метгемоглобинемия). В обоих случаях блокируются процессы транспортировки кислорода. Впрочем, монооксид углерода может быть частично вытеснен из гема при повышении парциального давления кислорода в легких.

Строени

Гемоглобин является сложным белком класса хромопротеинов, то есть в качестве простетической группы здесь выступает особая пигментная группа, содержащая железо — гем. Гемоглобин человека является тетрамером, то есть состоит из четырёх субъединиц. У взрослого человека они представлены полипептидными цепями α1, α2, β1 и β2. Субъединицы соединены друг с другом по принципу изологического тетраэдра. Основной вклад во взаимодействие субъединиц вносят гидрофобные взаимодействия. И α-, и β-цепи относятся к α-спиральному структурному классу, так как содержат исключительно α-спирали. Каждая цепь содержит восемь спиральных участков, обозначаемых буквами от A до H (От N-конца к C-концу).

Гем представляет собой комплекс протопорфирина IX, относящегося к классу порфириновых соединений, с атомом железа(II). Эта простетическая группа нековалентно связана с гидрофобной впадиной молекул гемоглобина и миоглобина.

Железо(II) характеризуется октаэдрической координацией, то есть связывается с шестью лигандами. Четыре из них представлены атомами азота порфиринового кольца, лежащими в одной плоскости. Две других координационных позиции лежат на оси, перпендикулярной плоскости порфирина. Одна из них занята азотом остатка гистидина в 93-м положении полипептидной цепи (участок F). Связываемая гемоглобином молекула кислорода координируется к железу с обратной стороны и оказывается заключённой между атомом железа и азотом ещё одного остатка гистидина, располагающегося в 64-м положении цепи (участок E).

Всего в гемоглобине человека четыре участка связывания кислорода (по одному гему на каждую субъединицу), то есть одновременно может связываться четыре молекулы. Гемоглобин в легких при высоком парциальном давлении кислорода соединяется с ним, образуя оксигемоглобин. При этом кислород соединяется с гемом, присоединяясь к железу гема на 6-ю координационную связь. На эту же связь присоединяется и моноксид углерода, вступая с кислородом в «конкурентную борьбу» за связь с гемоглобином, образуя карбоксигемоглобин.

Связь моноксида углерода с гемоглобином более прочная, чем с кислородом. Поэтому часть гемоглобина, образующая комплекс с моноксидом углерода, не участвует в транспорте кислорода. В норме у человека образуется 1,2 % карбоксигемоглобина. Повышение его уровня характерно для гемолитических процессов, в связи с этим уровень карбоксигемоглобина является показателем гемолиза.

Физиология

Для связывания кислорода с гемоглобином характерна кооперативность: после присоединения первой молекулы кислорода связывание последующих облегчается.

Гемоглобин является одним из основных белков, которыми питаются малярийные плазмодии — возбудители малярии, и в эндемичных по малярии районах земного шара весьма распространены наследственные аномалии строения гемоглобина, затрудняющие малярийным плазмодиям питание этим белком и проникновение в эритроцит. В частности, к таким имеющим эволюционно-приспособительное значение мутациям относится аномалия гемоглобина, приводящая к серповидноклеточной анемии. Однако, к несчастью, эти аномалии (как и аномалии строения гемоглобина, не имеющие явно приспособительного значения) сопровождаются нарушением кислород-транспортирующей функции гемоглобина, снижением устойчивости эритроцитов к разрушению, анемией и другими негативными последствиями. Аномалии строения гемоглобина называются гемоглобинопатиями.

Гемоглобин высоко токсичен при попадании значительного его количества из эритроцитов в плазму крови (что происходит при массивном внутрисосудистом гемолизе, геморрагическом шоке, гемолитических анемиях, переливании несовместимой крови и других патологических состояниях). Токсичность гемоглобина, находящегося вне эритроцитов, в свободном состоянии в плазме крови, проявляется тканевой гипоксией — ухудшением кислородного снабжения тканей, перегрузкой организма продуктами разрушения гемоглобина — железом, билирубином, порфиринами с развитием желтухи или острой порфирии, закупоркой почечных канальцев крупными молекулами гемоглобина с развитием некроза почечных канальцев и острой почечной недостаточности.

Ввиду высокой токсичности свободного гемоглобина в организме существуют специальные системы для его связывания и обезвреживания. В частности, одним из компонентов системы обезвреживания гемоглобина является особый плазменный белок гаптоглобин, специфически связывающий свободный глобин и глобин в составе гемоглобина. Комплекс гаптоглобина и глобина (или гемоглобина) затем захватывается селезёнкой и макрофагами тканевой ретикуло-эндотелиальной системы и обезвреживается.

Другой частью гемоглобинообезвреживающей системы является белок гемопексин[en], специфически связывающий свободный гем и гем в составе гемоглобина. Комплекс гема (или гемоглобина) и гемопексина затем захватывается печенью, гем отщепляется и используется для синтеза билирубина и других жёлчных пигментов, или выпускается в рециркуляцию в комплексе с трансферринами для повторного использования костным мозгом в процессе эритропоэза.

Главной функцией гемоглобина принято считать перенос кислорода к тканям. Однако, по более точным данным (Википедия), главная функция гемоглобина не состоит в переносе кислорода. Кислород, связанный с гемоглобином, переносится собственно эритроцитом. Гемоглобин ничего не переносит.

Главная функция гемоглобина заключается в трех этапах или процессах, определяющих три свойства гемоглобина.

Первый этап — присоединение молекулярного кислорода к гемоглобину.

Второй этап — образование сложных взаимоотношений между гемом и кислородом, а именно превращение молекулярного кислорода в синглетный кислород. Данный этап является этапом трансформации молекулярного кислорода в его реакционно-способную форму, необходимую для дальнейшего взаимодействия с клетками и является сущностью гемоглобина и смыслом его главной функции.

Третий этап — отдача синглетного кислорода в ткани. У человека в капиллярах лёгких в условиях избытка кислорода последний соединяется с гемоглобином. Током крови эритроциты, содержащие молекулы гемоглобина со связанным кислородом, доставляются к органам и тканям, где кислорода мало; здесь необходимый для протекания окислительных процессов кислород освобождается из связи с гемоглобином.

Кроме того, гемоглобин способен связывать в тканях небольшое количество диоксида углерода (CO2) и освобождать его в лёгких. Монооксид углерода (CO) связывается с гемоглобином крови прочнее, чем кислород, образуя карбоксигемоглобин (HbCO). Некоторые процессы приводят к окислению иона железа в геме до степени окисления +3. В результате образуется форма гемоглобина, известная как метгемоглобин (HbOH) (metHb, от мета… и гемоглобин, иначе гемиглобин или ферригемоглобин. В обоих случаях блокируются процессы транспортировки кислорода. Впрочем, монооксид углерода может быть частично вытеснен из гема при повышении парциального давления кислорода в легких.

9.общая хар-ка и ф-ции лейкоцитов.лейкоцитарные формы. Лейкоциты, или белые кровяные тельца, представляют собой бесцветные клетки разной величины (от 6 до 20 микрон), округлой или неправильной формы. Эти клетки имеют ядро и способны самостоятельно передвигаться подобно одноклеточному организму — амебе. Количество этих клеток в крови значительно меньше, чем эритроцитов и у здорового человека составляет 4,0-8,8 х 1000000000/л. Лейкоциты — главный защитный фактор в борьбе организма человека с различными болезнями. Эти клетки «вооружены» специальными ферментами, способными «переваривать» микроорганизмы, связывать и расщеплять чужеродные белковые вещества и продукты распада, образующиеся в организме в процессе жизнедеятельности. Кроме того, некоторые формы лейкоцитов вырабатывают антитела — белковые частицы, поражающие любые чужеродные микроорганизмы, попавшие в кровь, на слизистые оболочки и другие органы и ткани организма человека.

Существуют два основных типа лейкоцитов. В клетках одного типа цитоплазма имеет зернистость, и они получили название зернистых лейкоцитов — гранулоцитов. Различают 3 формы гранулоцитов: нейтрофилы, которые в зависимости от внешнего вида ядра подразделяются на палочкоядерные и сегментоядерные, а также базофилы и эозинофилы.

В клетках других лейкоцитов цитоплазма не содержит гранул, и среди них выделяют две формы — лимфоциты и моноциты. Указанные типы лейкоцитов имеют специфические функции и по-разному изменяются при различных заболеваниях, поэтому их количественный анализ — серьезное подспорье врача при выяснения причин развития различных форм патологии.

Функции лейкоцитов

Основной функцией нейтрофилов является фагоцитоз – поглощение чужеродных организмов (например, бактерий) или их частей. Нейтрофилы также выделяют вещества, обладающие бактерицидным действием.

Эозинофилы способны к активному передвижению, фагоцитозу, а также захвату и высвобождению гистамина, что делает эти клетки неотъемлемыми участниками воспалительно-аллергических реакций.

Способность к фагоцитозу базофилов мала и поэтому не играет большой роли, большее значение имеют базофилы, вышедшие из кровеносного русла в ткани (тучные клетки). Тучные клетки содержат большое количество гистамина, который, вызывая отёк, способствует ограничению распространения инфекции и токсинов.

Моноциты активно принимают участие в обеспечении иммунитета, так как помимо непосредственной нейтрализации чужеродных агентов посредством фагоцитоза, моноциты вырабатывают вещества, стимулирующие выработку антител.

Т-лимфоциты способны уничтожать бактерии, опухолевые клетки, а также влиять на активность B-лимфоцитов, которые в свою очередь являются основными клетками, отвечающими за гуморальный иммунитет, то есть выработку антител.

10.ф-ции базофилов и эозинофилов. Базофильные гранулоциты или базофилы, сегментоядерные базофилы, базофильные лейкоциты — подвид гранулоцитарных лейкоцитов. Содержат базофильное S-образное ядро, зачастую не видимое из-за перекрытия цитоплазмы гранулами гистамина и прочих аллергомедиаторов. Базофилы названы так за то, что при окраске по Романовскому интенсивно поглощают основной краситель и не окрашиваются кислым эозином, в отличие и от эозинофилов, окрашиваемых только эозином, и от нейтрофилов, поглощающих оба красителя.

Базофилы — очень крупные гранулоциты: они крупнее и нейтрофилов, и эозинофилов. Гранулы базофилов содержат большое количество гистамина, серотонина, лейкотриенов, простагландинов и других медиаторов аллергии и воспаления.

Базофилы принимают активное участие в развитии аллергических реакций немедленного типа (реакции анафилактического шока). Существует заблуждение, что базофилы являются предшественниками лаброцитов. Тучные клетки очень похожи на базофилов. Обе клетки имеют грануляцию, содержат гистамин и гепарин. Обе клетки также выделяют гистамин при связывании с иммуноглобулином Е. Это сходство заставило многих предположить, что тучные клетки и есть базофилы в тканях. Кроме того, они имеют общий предшественник в костном мозге. Тем не менее базофилы покидают костный мозг уже зрелым, в то время как тучные клетки циркулируют в незрелом виде, только со временем попадают в ткани. [1] Благодаря базофилам яды насекомых или животных сразу блокируются в тканях и не распространяются по всему телу. Также базофилы регулируют свертываемость крови при помощи гепарина. Однако исходное утверждение всё же верно: базофилы являются прямыми родственниками и аналогами тканевых лаброцитов, или тучных клеток. Подобно тканевым лаброцитам, базофилы несут на поверхности иммуноглобулин E и способны к дегрануляции (высвобождению содержимого гранул во внешнюю среду) или аутолизу (растворению, лизису клетки) при контакте с антигеном-аллергеном. При дегрануляции или лизисе базофила высвобождается большое количество гистамина, серотонина, лейкотриенов, простагландинов и других биологически активных веществ. Это и обусловливает наблюдаемые проявления аллергии и воспаления при воздействии аллергенов.

Базофилы способны к экстравазации (эмиграции за пределы кровеносных сосудов), причём могут жить вне кровеносного русла, становясь резидентными тканевыми лаброцитами (тучными клетками).

Базофилы обладают способностью к хемотаксису и фагоцитозу. Кроме того, по всей видимости, фагоцитоз не является для базофилов ни основной, ни естественной (осуществляемой в естественных физиологических условиях) активностью. Единственная их функция — мгновенная дегрануляция, ведущая к усилению кровотока, увеличению проницаемости сосудов. росту притока жидкости и прочих гранулоцитов. Другими словами, главная функция базофилов заключается в мобилизации остальных гранулоцитов в очаг воспаления.

Эозинофильные гранулоциты или эозинофилы, сегментоядерные эозинофилы, эозинофильные лейкоциты — подвид гранулоцитарных лейкоцитов крови.

Эозинофилы названы так потому, что при окраске по Романовскому интенсивно окрашиваются кислым красителем эозином и не окрашиваются основными красителями, в отличие от базофилов (окрашиваются только основными красителями) и от нейтрофилов (поглощают оба типа красителей). Так же отличительным признаком эозинофила является двудольчатое ядро (у нейтрофила оно имеет 4-5 долей, а у базофила не сегментировано).

Эозинофилы способны к активному амебоидному движению, к экстравазации (проникновению за пределы стенок кровеносных сосудов) и к хемотаксису (преимущественному движению в направлении очага воспаления или повреждения ткани).

Эозинофилы, как и нейтрофилы, способны к фагоцитозу, причём являются микрофагами, то есть способны, в отличие от макрофагов, поглощать лишь относительно мелкие чужеродные частицы или клетки. Однако, эозинофил не является «классическим» фагоцитом, его главная роль не в фагоцитозе. Главнейшее их свойство — экспрессия Fc-рецепторов, специфичных для Ig E. Физиологически это проявляется в мощных цитотоксических, а не фагоцитарных, свойствах эозинофилов, и их активном участии в противопаразитарном иммунитете. Однако, повышенная продукция антител класса E может привести к аллергической реакции немедленного типа (анафилактический шок), что является главным механизмом всех аллергий такого типа.

Так же эозинофилы способны поглощать и связывать гистамин и ряд других медиаторов аллергии и воспаления. Они также обладают способностью при необходимости высвобождать эти вещества, подобно базофилам. То есть эозинофилы способны играть как про-аллергическую, так и защитную анти-аллергическую роль. Процентное содержание эозинофилов в крови увеличивается при аллергических состояниях.

Эозинофилы менее многочисленны, чем нейтрофилы. Большая часть эозинофилов недолго остаётся в крови и, попадая в ткани, длительное время находится там.

Нормальным уровнем для человека считается 120—350 эозинофилов на микролитр. Повышение уровня эозинофилов в крови называют Эозинофилией, снижение уровня Эозинопенией.

Функцией базофильных гранулоцитов крови и тканей (к последним относят и тучные клетки) является поддержание кровотока в мелких сосудах и трофики тка­ней, поддержание роста новых капилляров, обеспечение миграции других лейкоцитов в ткани. Базофильные гранулоциты способны к фагоцитозу, миграции из кровяного русла в ткани и передвижению в них. Базофильные лейкоциты участвуют в формировании аллергических реакций немедленного типа.

Цитоплазмы зрелых базофилов содержат гранулы неравных размеров, окрашивающихся в фиолетоворозовые тона при окраске по Романовскому-Гимза. Базофилы могут синтезировать и накапливать в гранулах биологически активные вещества, очиoая от них ткани, а затем и секретировать их.

Постоянно присутствуют в клетке:

а) Кислые глюкозаминогликаны (ГАГ) — хондриотинсульфат, дерматансульфат, гепарансульфат и гепарин — основной антикоагуляционный фактор;

б) Гистамин —антагонист гепарина, укорачивающий время кровотечения, активатор внутрисосудистого тромбообразования. Гистамин стимулирует фагоцитоз, оказывает прововоспалительное действие на ткань.

Каждый базофил содержит:

а) 1-2 пикограмма гистамина,

б) «фактор, активирующий тромбоциты» — вещество, вызывающее агрегацию тромбоцитов и освобождение их содержимого,

в) «эозинофитьный хемотаксический фактор анафилаксии», вызывающий выход эозинофилов из сосудов в места скопления базофилов.

При сенсибилизации организма, т.е. повышенной чувствительности его к аллергенам, в базофилах образуется, так называемая «медленно реагирующая субстанция анафилаксии», вызывающая спазм гладкой мускулатуры.

Основными хемотаксическими факторами, определяющими направление движения базофилов, являются лимфокины, секретируемые лимфоцитами в присутствии аллергена, калликриин, фактор комплемента С567. Базофилы, тучные клетки окружают мелкие сосуды печени и легких, секретируя гепарин и гистамин, что поддерживает нормальный кровоток в сосудах, т.к. в этих тканях могут форми­роваться эмболические тромбы, благодаря медленному течению венозной крови, а в легких — благодаря повышенной концентрации тромбоцитов. Базофилы оказывают эффекты, благодаря дегрануля-ции, т.е. выбросу содержимого гранул во внеклеточную среду. Мощными активаторами их дегрануляции являются иммуноглобулин Е и взаимодействующие с ним аллергены — вещества антигенной природы, вызывающие сенсибилизацию организма. Базофильные гранулоциты и тучные клетки имеют общую КОЕ. Это дает основание рассматривать тучные клетки как тканевые формы базофилов. В лейкоцитарной формуле содержится 0,25-0,75% базофилов или около 0,04 • 109/л крови.

Функции эозинофильных лейкоцитов направлены на защиту организма от паразитарной инфекции гельминтами (шистосом, трихинел, аскарид и др.). Эозинофилы уменьшают концентрацию биологически активных соединений, возникающих при развитии аллергических реакций. Эозинофилы являются антагонистами тучных клеток и базофилов благодаря секреции веществ, предупреждающих длительное действие биологически активных веществ этих клеток. Эозинофилы обладают фагоцитарной и бактерицидной активностью. Для зрелого эозинофила характерно 2-х или 3-х дольчатое ядро и два типа гранул в цитоплазме. Большие гранулы содержат специфический основной белок (MB 11000), обладающий свойством нейтрализовать биологически активные веoества — гепарин, медиаторы воспаления, а также ряд ферментов — B-глюкоуронидазу, рибонуклеазу, фос-фолипазу Д и др. Последняя инактивирует «фактор активи­рующий тромбоциты», секретируемый базофилами, предупреждая агрегацию тромбоцитов. Маленькие гранулы содержат кислую фосфатазу и арилсульфатазу В, нейтрализующую «медленно реагирующую анафилактическую субстанцию».

Для эозинофилов мощным хемотаксическим фактором является «эозинофильный хемотаксический фактор анафилаксии», кислый пептид (MB 500), секретируемый тучными клетками и базофилами. Его секреция обуславливает выход эозинофилов в места скопления тучных клеток и базофилов. Хемотаксическими эффектами в отношении эозинофилов обладают фрагменты молекул комплемента С3a, C5aи С567, хемотаксис эозинофилов усиливают гистамин и секрет лимфоцитов, активированных паразитарным антигеном. Хемотаксис позволяет эозинофилам, взаимодействуя с другими клетками крови и иммунными механизмами, участвовать в антипаразитарной защите организма. Например, препятствовать шистосоматозу — широко распространенному в тропиках гельминтозу. Эозинофилы фиксируются на поверхности шистосомулы (ювенильная форма паразита), содержимое гранул эозинофилов повреждает поверхностные структуры паразита и эозинофилы мигрируют в его интерстициальную ткань, вызывая гибель шистосомулы.

При аллергических заболеваниях человека эозинофилы накапливаются в тканях, участвующих в аллергических реакциях (перибронхиальная ткань легких при бронхиальной астме и др.) и нейтрализуют, образующиеся в ходе этих реакций, биологически активные соединения — гистамин, «медленно реагирующую субстанцию анафилаксии», «фактор, активирующий тромбоциты», тормозят секрецию гистамина тучными клетками и базофилами. Подобно нейтрофильным лейкоцитам, эозинофильная серия лейкоцитов представлена в костном мозге пулом пролиферирующих и созревающих клеток — от эозинофильного миелобласта до миелоцита, и пулом созревающих клеток, начиная от мета миелоцита. Продолжительность развития первого составляет 5,5 дней, второго — 2,5 дня.

В крови человека содержится 2-4% эозинофилов или 0,15— 0,25 • 109/л крови. Увеличение их количества называется эозинофилией и свидетельствует о возможной паразитарной инфекции или аллергическом заболевании. Для эозинофилов человека характерно накопление их в тканях, контактирующих с внешней средой — в легких, желудочно-кишечном тракте, коже, урогенитальном тракте. Их количество в этих тканях в 100-300 раз превышает содержание в крови.

11.ф-ции лимфоцитов. Лимфоциты (от лимфа и греч. κύτος — «вместилище», здесь — «клетка») — клетки иммунной системы, представляющие собой разновидность лейкоцитов группы агранулоцитов, белых кровяных клеток. Лимфоциты — главные клетки иммунной системы, обеспечивают гуморальный иммунитет (выработка антител), клеточный иммунитет (контактное взаимодействие с клетками-жертвами), а также регулируют деятельность клеток других типов. В норме в крови взрослого человека на лимфоциты приходится 20—35 % всех белых клеток крови (см. Лейкоцитарная формула), или в абсолютном виде 1000—3000 кл/мкл. При этом в свободной циркуляции в крови находится около 2 % лимфоцитов, находящихся в организме, а остальные 98 % находятся в тканях.

По морфологическим признакам выделяют два типа лимфоцитов: большие гранулярные лимфоциты (чаще всего ими являются NK-клетки или, значительно реже, это активно делящиеся клетки лимфоидного ряда — лимфобласты и иммунобласты) и малые лимфоциты (T и B клетки).

По функциональным признакам различают три типа лимфоцитов: B-клетки, T-клетки, NK-клетки.

В-лимфоциты распознают чужеродные структуры (антигены), вырабатывая при этом специфические антитела (белковые молекулы, направленные против конкретных чужеродных структур).

T-киллеры выполняют функцию регуляции иммунитета. Т-хелперы стимулируют выработку антител, а Т-супрессоры тормозят её.

NK-лимфоциты осуществляют контроль над качеством клеток организма. При этом NK-лимфоциты способны разрушать клетки, которые по своим свойствам отличаются от нормальных клеток, например, раковые клетки.



Источник: studfile.net


Добавить комментарий